
WHITE PAPER

Tackle Application
Modernization
in Days and Weeks,
Not Months and Years

2

 Table of Contents
Why you need application modernization. . 3

Our application modernization approach . 4

Types of application modernization . 5

Tenets of application modernization. . 5

Prerequisites for the application modernization journey. 6

Organizational commitment. 7

A list of viable application candidates . 7

The right people (aka a seed team. . 7

Give your applications a modern runtime with a

 production-grade platform infrastructure. . 8

Start and scale portfolio transformation . 8

How to select an initial set of applications . 9

Analysis: Prioritize modernization across your app estate . 9

Analysis: Quickly assess technical suitabilit. . 10

Analysis: Automated source code analysis. .10

Define the path to production. . 11

Initial set of objectives and key results . . 11

How to replatform your applications . 12

Establish three work tracks and apply their respective OKRs. . 12

Automate testing to boost code quality . 12

Improve your continuous integration automation. 13

Refactor and optimize complex systems . . 13

Swift methodology yields a shared understanding of desired system behavior 13

Storming uncovers what matters: Critical input for any modernization project. 14

Boris exercise models the relationships between system capabilities 15

SNAP documents the outcomes of a Boris exercise . . 16

Thin slices of modernization, shaped by Swift and captured as MVPs. 16

Initial backlog gets your team hands-on in days. . 17

Use quantitative measurements to track your success . 17

Next steps and recommended reading. . 18

3

Why you need
application modernization
Most developers work on existing applications: products and services that have been built,
maintained and updated over long periods of time. Normally, these apps exist as a web of tightly
coupled, sparsely documented systems.

Over time, large organizations develop layers of manual processes designed to minimize risk and
ensure compliance. As a result, software releases are often infrequent, highceremony events that
require heroism and brute force. This bleak status quo is untenable for businesses that want to
compete and win in the digital age. The question you need to answer is simply: “How can I refactor
my most important apps, so I can get new features to production faster?”

VMware Tanzu Labs has answered this question for hundreds of enterprises. The foundation of
this success: a modernization methodology that leverages cloud native patterns and continuous
delivery (CD) automation across your existing application portfolio.

The benefits of CD are clear (and outside the scope of this paper), but getting there is a universal
challenge. We take an iterative approach to modernization by starting in a small, focused way.
We help you realize incremental time, cost and operational efficiencies while improving security,
resilience and compliance. We pair with you to update and automate processes incrementally, while
transforming your applications. This yields a win-win for you and your teams: It reduces the pain of
releasing updates more often, while meeting.

THE PRESIDIO AND VMWARE PARTNERSHIP
Presidio and VMware collaborate to accelerate our shared customers’ digital transformation
journeys. Presidio combines its strategic consulting and lifecycle services with VMware’s innovative
technology platforms, to design, implement and manage agile, secure, multi-cloud solutions
optimized for each customer’s unique requirements. Together, Presidio and VMware help our
customers realize better business outcomes in a dynamic and competitive marketplace.

Learn more about Digital Transformation at presidio.com/bigcloud

https://content.pivotal.io/intersect/the-cios-guide-to-ci-cd

4

Our application
modernization approach
There are different reasons and many ways to start a modernization journey. Two rationales are
most common:

 1. ��Portfolio transformation – Focused on broad and strategic efforts to migrate, refactor and
transform an existing portfolio to cloud-based technologies. Enterprises well on their way to
cloud still find it very challenging to realize desired outcomes as they continue to fight against
technical debt and organizational inertia. Stakeholders want to move quickly, retire heritage
assets, and capture time and cost-centric outcomes across the portfolio.

 2. �System modernization – Relates to an existing system of systems that’s business-critical,
expensive to update, technically complex and under active development. New feature
demand or business direction prolongs delivery time and increases cost while magnifying
architectural complexity. Cloud technology and cloud native architectural patterns provide an
opportunity to solve problems.

Portfolio transformation is challenging from a technical, business and human perspective. It
requires your teams to develop new skills, while making major changes to architecture and
software development lifecycle (SDLC) processes. Change can often result in IT reorganization,
a frightening prospect. To be successful, organizations must perform a delicate balancing
act: Dedicate their most talented people to the effort, while ensuring that the entire portfolio
continues to operate.

The keys to system modernization success lie in understanding the root cause (e.g., bloated,
monolithic code base) before a solution is determined. Sometimes, technology change is all that
is needed. But more often, the problem is complex and requires strategic thinking, planning and
iteration. Either way, it’s critical to quickly get to the heart of the concern. Avoid the temptation
of fixing symptoms (e.g., UI responsiveness), even though those are easier to see.

Tanzu Labs has helped hundreds of organizations on this journey. Our approach defines
incremental steps that gradually increase the cloud maturity of existing systems, the automation
in your SDLC and the knowledge of your team.

Before we get into detail, let’s define some vocabulary and core tenants.

5

Types of application modernization
The word “modernization” can mean different things to different people. We see modernization
as an approach that improves an existing piece of software. We define improvement as making
updates that align with IT and business outcomes. We also have seen technology companies,
analysts and system integrators articulate options for this type of work, including, for example, lift
and shift (focused on workload containerization). However, we like to keep it simple and, when
possible, avoid buzzword bingo. As such, we believe there are two general ways to modernize
existing systems:

Replatform – Targets self-contained applications or sub-system modules, and uses minimal effort
to run executables in OCI-compliant containers. Outcomes are IT-focused and often related to
goals such as higher operational efficiency (e.g., fewer people to run more containers) and better
infrastructure density (e.g., multiple containers per virtual machine). Effort is low.

Refactor – Code is converted to run in a 15-factor-compliant way by moving thin slices of
functionality to cloud native patterns. The goal: Deliver fast, iterative results while providing
interoperability features for continuous operation with the old system. This process starts with
rapid investigation of an existing system to find root problems and opportunities. The output
of this exercise flows into the next step: iterative work to make improvements. Effort can be
moderate to high depending on slice definition, intended outcomes and degree of technical debt.
The work is crucial to unlocking the desired business outcomes.

These types are not mutually exclusive. Portfolio transformation typically starts with
replatforming efforts that emphasize SDLC process and skill improvements, before getting into
larger, more complex modernization work. Modernization projects, especially those that span
multiple systems, will likely also include replatforming. More than anything, it’s about outcomes
and getting there as quickly as possible in a sustainable way.

Tenets of application modernization
These are the four elements of a successful application modernization initiative:

 1. �Start small – Even if your portfolio contains thousands of apps, start with a single
business unit and a handful of applications that matter.

 2. �Automate everything – Use test-driven development, continuous integration and
continuous deployment to reduce manual process time and SDLC cost.

 3. �Learn by doing – Inform strategy and build new skills through hands-on effort, rapid
feedback, measuring results and by creating a cookbook of patterns as you go.

 4. �Break things down – Iterate quickly and continually on thin slices of complex systems.
We emphasize these tenants to quickly focus on the right things and deliver impactful,
iterative results.

http://opencontainers.org/
https://content.pivotal.io/blog/beyond-the-twelve-factor-app

6

Prerequisites for the application
modernization journey
Starting the work requires a list of viable apps to migrate, organizational commitment and the
right people. It’s critical to start small; initial efforts will be intense and learning-oriented.

A LIST OF VIABLE APPLICATION CANDIDATES
Start portfolio transformation with a set of custom apps that have business relevance and
are active use.

ORGANIZATIONAL COMMITMENT
A motivated business unit with leadership committed to cloud and a willingness to invest
time and dollars in transformation.

THE RIGHT PEOPLE
A small team of people that understand the application domain(s), who are made available
to work on the initiative in a dedicated way.

Figure 1: Apps, commitment and people.

Motivated
Business Unit

A Committed
Executive Inside
of a Motivated
Business Unit

App Developers
with Domain
Knowledge

An Empowered Tanzu Ops Team
with Ties to Business Units

An Initial Set of Apps
Identified by Archetype,
Suitability and Priority

Your
Platform

Team

Technical Business

7

Organizational commitment
The application modernization journey must begin somewhere, usually within a business unit.
It’s critical that local leadership be motivated and willing to invest time and money into the
transformation. A series of small successes are needed before application modernization can
spread across the larger organization.

Sponsorship is usually a CIO or senior executive responsible for transformation within the target
business unit and who controls a relevant budget. The sponsor must have the political capital to
unblock existing policy and process, as well as other obstacles standing in the way of the app
transformation team.

The other aspect of organizational commitment: mission and goals. A broad North Star goal
and tangible, near-term objectives are critical to defining the effort. This will determine funding,
measurement and intended duration. These things may (and often should) evolve. But it’s
important to both motivate and measure people against what success looks like.

A list of viable application
candidates
Portfolio transformation starts with a basic understanding of technical suitability. This is how
you’ll choose a first set of applications to be refactored. Applications will be selected based on a
combination of Tanzu Labs technical, business and organizational factors. Selection criteria will
be codified into a decisioning model, discussed in Start and scale portfolio transformation. That
said, establish a rough sense of apps that matter from a business perspective. The ideal candidate
apps should run without high cost or complexity on the chosen cloud platform.

The right people (aka a seed team)
Our most successful Tanzu customers have assembled a small team of employees to drive the
application modernization initiative. The dedicated team includes a product owner and (ideally)
developers familiar with the initial candidate applications to be transformed. The team should
also have experience (and/or training) with the target platform and cloud native architecture
principles. And, finally, it’s critical that the seed team be empowered by leadership to make
decisions without lengthy process ticketing or sign-offs.

8

CORE ROLES WITHIN SMALL CROSS-FUNCTIONAL TEAMS

Product owner Represent business interests through backlog prioritization and internal
coordination to unblock encountered issues by the team to ensure maximum
project velocity.

Project anchor Hands-on technical leaders who pair with product owners on backlog concerns,
guide technical practices, oversee quality and do technical work.

Developer Skilled architect/developers who know the existing app and underpinning stacks
being worked on as they grow cloud native skills and experience by doing the
work.

Give your applications a modern
runtime with a production-grade
platform infrastructure
If possible, a production-grade platform should be available as a prerequisite. It should be
operated by a dedicated platform product team. Expect frequent interaction with the platform
group, as this team will assist with configuration updates (networking, storage, logging, etc.) to fit
application requirements.

Start and scale portfolio
transformation
Effective decision-making is critical. We recommend establishing an ongoing work stream,
running parallel to a technical track of modernizing applications. You’ll need to designate
someone to own identifying business and technical criteria, governance and measurement. You’ll
also need this person to wade through the inter-company processes (funding, people, incentive
structure, etc.) needed to facilitate the work. Ideally, this effort yields a set of assumptions
used to make decisions around technical suitability, business characteristics and organizational
factors—key inputs for prioritization.

We measure technical suitability using 15 technical factors, an update to the 12-factor app
manifesto published by Heroku. Compliance with all 15 factors generally means your app is cloud
native, will run on a modern cloud platform and take full advantage of elastic cloud features, such
as auto-scale. In our experience, most applications in your portfolio don’t require the full cloud
native treatment. Instead, they can be replatformed to achieve IT outcomes with minimal time
and cost. Full cloud native compliance is best achieved through new greenfield initiatives or via
modernization projects having a supporting business case.

https://content.pivotal.io/springone-platform-2018/buckets-funnels-mobs-and-cats-or-how-we-learned-to-love-scaling-apps-to-the-cloud
https://www.oreilly.com/library/view/beyond-the-twelve-factor/9781492042631/
https://12factor.net/

9

How to select an initial set of
applications
Select an initial sampling of apps representative of the broader portfolio in terms of technical
design or archetype. The perfect apps would be of lower technical complexity. This allows the
new team to learn, earn some wins and spend their time on process improvements (instead of
tedious code refactoring). Companies in regulated industries should ensure that these apps
reflect common policy, security and compliance constraints. And remember to look at data—
apps tightly coupled to a shared monolithic database are harder to refactor due to collateral
impact on other connected systems.

ANALYSIS: PRIORITIZE MODERNIZATION ACROSS YOUR APP ESTATE

Prioritization requires a clear sense of business and organization factors that signal the why, how
and when of modernization. Defining these factors is subjective and will be far from perfect.
What’s most important is to use ongoing feedback to sharpen your selection criterion over time as
the initiative grows.

Tanzu Labs generally uses a simple 2x2 matrix and facilitated conversation to quickly determine
prioritization and to flag questions, assumptions and risks. The X and Y axes often frame
complexity and value from low to high to categorize apps in scope. When a large number of
apps are plotted, they tend to cluster together and it’s useful to create a child matrix for deeper

.

Technical Business

What can we move?

Decisioning Model

• Framework / Runtime

• Architecture design

• Statefulness

• Use of proprietary tooling

• Dependencies / integration

• Usage / Workload

A framework for disposition
planning, prioritization and
governance

• Domain expert availability

• Lifestyle stage

• Cloud Strategy

• Calendar dependencies

•

• Org structure / maturity

Why move?

Org Factors
(the “When” and “How”)

• Licensing costs

• Time-to-market factors

• Revenue opportunities

• Business criticality

• Risk tolerance

• Chance frequency

Figure 2: Modernization decision-making fundamentals.

10

probing. This exercise will help establish a general consensus around which apps balance technical
suitability with business impact. From there, more analysis is required in context of apps deemed
highest priority.

ANALYSIS: QUICKLY ASSESS TECHNICAL SUITABILITY

SNAP (snap not analysis paralysis) is an approach used to evaluate the technical suitability of
application candidates when source code is unavailable. SNAP covers app usage, architecture
and configuration. It can be done manually in 10-15 minutes on a small set of apps. Tanzu Labs
conducts this exercise using facilitated conversation and stickies, or by using a web application
(see Figure 3).

ANALYSIS: AUTOMATED SOURCE CODE ANALYSIS

Application code has a story to tell and, when available, you can perform SNAP automatically on
hundreds or even thousands of apps using our industry-leading automated assessment tooling
combined with leading open-source frameworks. We can provide insight in terms of cloud
suitability, security, language, licensing and quality.

Figure 3: Web version of SNAP.

Figure 4: VMware Tanzu report generator.

11

DEFINE THE PATH TO PRODUCTION

Chances are your existing SDLC processes have been in place for a long time. They likely involve
diverse sets of people and approved tooling standards. Further, your incumbent practices
are likely organized around important policies and regulations. Getting source code from a
developer’s laptop into production requires manual effort and time. Cloud platforms, when
combined with CI tooling and CD techniques, can automate much of the toil, and significantly
accelerate the frequency of production deployments.

To refactor your path to production, you should first baseline what exists today. Tanzu Labs uses
in-person techniques such as event storming to discuss, probe and plot the sequence of activities
involved in releasing software. This can often be done in a couple of hours. The end result: a
rough approximation of process flow, opportunities and areas of risk. Then, we map the findings
and translate our notes into a spreadsheet and continue to quantify cycle time and cost.

INITIAL SET OF OBJECTIVES AND KEY RESULTS

Clear and quantifiably measured goals help the team stay focused on tangible outcomes, not busy
work. As such, these goals are critical to achieving realizing iterative results. Our clients have seen
success with the objectives and key results (OKR) format. We start by assembling a cross section of
the team (stakeholders, infrastructure, development, business) into a workshop. The first task: Map
near-term goals (mission and high-level objectives) along with specific, quantifiable key results.
From there, the sub-team prioritizes what can (and should) be accomplished within the first weeks
of the initiative. Be as specific as possible. Ensure your OKRs speak to results and avoid (as best
you can) using yes/no metrics that state if something is done or not.

Figure 5: A value stream for traditional custom app development.

75 Requests

Lead Time
7 Months

Lead Time
2 Months

Lead Time
3 Weeks

Lead Time
2 Months

80
Releases
Per Year

20 Requests 45 Tickets

Backlogs & Queues Hand-offs Team Size Tasks

IT PMOFunding Dev & QA IT Ops

Business Unit
Initiative

Business Unit
Initiative

XXXX

5 3 135 30

Annual
Planning
Monthly

Approvals

12

How to replatform your applications
Make the minimal testable changes to each application required to run it on cloud

The first phase of the app modernization efforts moves the initial sample set of applications,
those candidate apps selected with the process previously described. Migrated apps should work
identically, or better, on cloud than on their current runtime. You can achieve this result even
when your apps only conform with a few cloud native factors. In parallel, we work to deploy the
required changes with an automated CI pipeline.

ESTABLISH THREE WORK TRACKS AND APPLY THEIR RESPECTIVE OKRS

There are three parallel work tracks, each with their own OKRs:

 1. �Technical – The application modernization team will work in week-long sprints. A first app can
generally be rehosted or replatformed within hours or days. OKRs for this work track typically
measure the number of apps that have been moved.

 2. �Process – Work through process and policy issues required to get the migrated apps into
production. This might include release management; infrastructure issues (network, firewall,
DNS); security considerations (OSS, credential management, code scans); application
telemetry (logging, health monitoring); risk mitigation (standards adherence, regulation);
and business issues (business validation, training readiness). Analysis might result in a new CI
pipeline, the adoption of advanced deployment techniques (bluegreen, canary) or automated
dependency management. OKRs might include pipeline improvements to increase delivery
speed or reduce time to resolution.

 3. �Patterns – Popular technologies such as Java and .NET use standard architectures and
employ common messaging patterns. As a result, the technical challenges you solve (e.g.,
how to modify JBoss code to run on a chosen cloud technology) can be documented as a
set of patterns and be reused broadly. This action helps accelerate and de-risk future efforts.
This is why you want your initial apps to represent most archetypes in the portfolio. Once the
apps have been migrated, the resulting patterns can be used to transform thousands more
apps. OKRs should cover documentation and usage of these patterns.

AUTOMATE TESTING TO BOOST CODE QUALITY

There may be little to no automated test coverage for an existing application portfolio.
Retrofitting full coverage is unrealistic. Instead, when writing new code, you should include unit
and integration tests, preferably using TDD practices. All migrated code should include smoke
and health check tests for backing services and, if possible, acceptance tests.

Integrate testing into the CI pipeline wherever possible. This way, testing becomes a standard part
of release management. Push migrated applications to production. Start to transition the central
QA role to a more exploratory, functional testing role. Document your new testing practices.
This will help you standardize modern QA practices throughout your organization as the app
transformation efforts scale up.

https://builttoadapt.io/why-tdd-489fdcdda05e

13

IMPROVE YOUR CONTINUOUS INTEGRATION AUTOMATION

Many large organizations have release processes that take weeks or months. These processes
often become more complex and more opaque over time. Revisit, challenge and make updates
to your path to production process model for the migrated apps. This way, you can continuously
eliminate wasted effort through automation. Add incremental efficiencies by first automating
human-centric, manual processes. We’ve seen cases where an eight-month release process was
reduced to a few weeks, and further shortened to days.

A full tool chain must be available to push to production. This could be an existing tool chain
provided by the platform team, a new tool chain selected by the app modernization team or
some combination of the two.

Refactor and optimize
complex systems
The goal of modernization: Make testable changes to applications and make them run natively on
cloud, aiming for 15-factor compliance. This effort is commonly summarized as break monoliths
down into microservices.

Refactoring typically results in decomposition of an existing system wherein business logic (and
data) is refactored into domain-specific services. Typically, these are long-lived core systems.
They tend to be important to the business. The status quo (costly to operate, difficult to improve)
is unacceptable. Further, the systems can suffer from lackluster uptime and are near-impossible
to scale. These monoliths have served the business well over the last decade, but you need a
new model for the next 10 years. That’s where microservices come in. How can you navigate this
transition cleanly? Simple: by gradually replacing your monolith with microservices.

This process goes something like this. Each resulting microservice often gets its own database(s)
to store information it cares about. Collections of related microservices that live in multiple
bounded contexts can use eventing to keep data synchronized across data stores. New
microservices and replatformed slices will continue to work seamlessly with legacy code until the
entire monolith has been moved.

SWIFT METHODOLOGY YIELDS A SHARED UNDERSTANDING OF DESIRED
SYSTEM BEHAVIOR

Swift is a set of lightweight techniques, using agile and Domain-Driven Design (DDD) principles to
help teams plan enough to get started, and organized around a backlog of work. These include:

 1. Event storm the system, using language that business and technical people understand.

 2. Conduct a Boris exercise that models the relationships between capabilities in a system.

 3. �Conduct a SNAP that documents the technical capabilities identified during Boris in real time.

 4. Identify tactical patterns, like anti-corruption layers and service choreography.

 5. Define OKRs.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.eventstorming.com/
https://en.wikipedia.org/wiki/OKR

14

 6. Create a backlog of prioritized user stories tied back to OKRs.

 7. Start hands-on experimentation, feedback and iterative progress.

 8. �Swift aligns business leaders and technical practitioners. Use this approach and, at its
conclusion, you’ll have an architectural plan that maps future goals with the way the system
wants to behave. We’ve found this to be especially important for critical systems modernization.

Information gained through the use of Swift informs decisions on how to organize development
teams and prioritize stories (from both a business and technical perspective). It’s also helpful as a
catch-all way to define a path between the status quo and the desired state.

STORMING UNCOVERS WHAT MATTERS: CRITICAL INPUT FOR ANY
MODERNIZATION PROJECT

Event storming is a cross-functional facilitation technique. It can be applied to a business, a
process or a system. In the context of modernization, we use event storming to help reveal logical
entities, bounded contexts, trouble spots, questions and starting points. But in simple terms,
event storming helps you make sense out of a large mess (like a process or system, for example)
and get consensus on what’s important as you begin to find the scope of work.

A facilitator leads a mixed business and technical audience through a conference room exercise,
documenting the logical flow of a system (or process) from end to end. At Tanzu Labs, we worry
less about strict adherence to event storming jargon and rules. We use the exercise to quickly
make sense of complexity. Getting people together in person is hard; expert facilitation assures
that the best possible result.

Once the system scope and problem context is captured, we proceed to identify notional service
candidates. The service candidates will be instrumental to the Boris exercise. This effort is
discussed next.

Figure 6: A simple event storming example.

Domain Events

Bounded Context

Customer
Profile

Updated

Delivery
Location

Determined

Available
 Restaurants
Determined

Delivery
Time

Determined

Payment
Authorized

Order
Started

Food
Purchaser

Selects
Menu Items

Order
Placed

Food
Purchaser

Customizes
Items

Restaurant
Selected

Order
Canceled

Driver
Ready

Discount
Applied

Driver
Accident

When
to Charge

Customer
Notified

Payment
Finalized

15

BORIS EXERCISE MODELS THE RELATIONSHIPS BETWEEN SYSTEM CAPABILITIES

The Boris exercise (name inspired by this song) helps us identify system components and
relationships. A Boris exercise uses graph theory to model the relationships between the
capabilities in a system. It generates information about how the system wants to be designed and
attempts to avoid the tendency of designing a solution before really understanding the problem.
Similar to event storming, Boris depends on live collaboration, a lot of sticky notes and working
space (usually a conference room).

The Boris exercise uses insight discovered by event storming and graph theory to identify system
components and model their relationships. Colored tape connects sticky notes to indicate
communication paths (e.g., direction) and types (e.g., asynchronous). This yields a system
diagram that often resembles a spider’s web. As the diagram is built, the team performs SNAP
analysis (discussed next) to rapidly document findings.

Figure 7: Sample Boris diagram based on event storm output from Figure 6.

Service

Topic/Queue

External System

Async

Sync

Order

UI

Order
 Placed

Driver

Restaurant

Food
Purchaser

Review/
Feedback

Marketing

Analytics

Driver
Assigned

Payment

Order
Complete

Food
Picked

Up

Payment
Complete

Food
Delivered

PayPal

Food
Ready

https://en.wikipedia.org/wiki/Boris_the_Spider

16

SNAP DOCUMENTS THE OUTCOMES OF A BORIS EXERCISE

Remember SNAP from our discussion of replatforming? It plays a role in modernization as well.
SNAP is used to quickly document the outcomes of a Boris exercise in real time. Information is
often grouped into APIs, data, pub/sub, external systems/UI, stories and risks. The key artifact
is a poster-sized sticky paper on a conference room wall, with one SNAP per node or service
depicted on Boris

THIN SLICES OF MODERNIZATION, SHAPED BY SWIFT AND CAPTURED AS MVPS

Thin slices are short domain event flows. Think of them as the architectural components required
to produce those events. Thin slices are informed by event storming, Boris and SNAP activities.
They become actionable when captured in the backlog as MVPs or collections of stories. We’ll
partner with your team to identify and prioritize the thin slices, with an eye to balancing business
value, technical risk and effort. The goal is to incrementally move the system toward behaving the
way it wants to; the implementation of each successive slice gets us that much closer to this goal.
As we define the slices, we also discuss tactical implementation patterns (e.g., anti-corruption
layers, Facade, Proxy, Strangler, etc.), risks and challenges.

Figure 8: Sample SNAP output.

DataAPI UI/Exit

SubPubStories

Current
OMS

Mobile
Consumer

Order
Details

Historical
Order
Info

Order
 Placed

Order
Complete

Driver
 Assigned

Food
Picked

 Up

Update
 Order
Notes

Get
Order
Status

Get
Order

 Details

Order

17

INITIAL BACKLOG GETS YOUR TEAM HANDS-ON IN DAYS

Next, you’ll translate many sticky notes into an initial backlog that’s prioritized to guide
the implementation of thin slices. The backlog contains user stories, component stories for
implementing architectures, and experiments (spikes) to address challenges and risks. It’s
also just large enough to get hands-on work started. Your team will then proceed to quickly
deliver functionality, and subsequently prove or disprove assumptions made about the notional
architecture. Your backlog is a living artifact; it is continually groomed, and additional stories are
added and prioritized to incrementally advance thin slice implementation.

Notice a pattern? Backlog grooming, event storming, Boris, SNAP and slice definition are iterative
processes. You’ll repeat them as many times as necessary during a system modernization.
These methods are most effective when conducted by cross-functional teams that have strong
executive support. The practices produce working software, flexible architecture, and a catalog of
recipes and patterns.

Use quantitative measurements to
track your success
We recommend defining (and continuously refining) OKRs for each step. The ideal OKR is a
quantitative measurement that covers process, time and cost improvements. OKRs should
provide fine-grained insight, for intended project outcomes, that roll into the broader mission.

How do you know what good looks like? We like the metrics offered by the DevOps Research and
Assessment (DORA). Here are a few signals that show your effort is succeeding:

 • Increased deployment frequency – More software releases this quarter than last quarter

 • Release management efficiency – Lower lead and process time, fewer steps and hand-offs

 • �Improved operational metrics for transitioned apps – Mean time to recovery (MTTR), mean
time between failures (MTBF), support upgrades and so on

 • Improved security – Faster patching, zero downtime upgrades and so on

 • Efficient infrastructure usage – Higher density compute, auto-scaling and cost reduction

VMware Tanzu Labs helps organizations all over the world to modernize large systems across
entire portfolios. However, we do not have all the answers; we learn as much from our customers
as we teach them. Customer journeys such as Liberty Mutual have informed much of the advice
discussed in this white paper.

https://cloud.google.com/devops/
https://cloud.google.com/devops/
https://www.youtube.com/watch?v=vabrFqYKNeI

